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Let R be a right order in Q(R). R is a maximal right order in Q(R)
<= If there exists a right order S in Q(R) and a regular element
R such that either ¢S C R or Sc C R implies that S = R.
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Definition

Let / be a fractional R-ideal. (R: /1), = {q € Q(R)|q/ C R} and
(R:1)y={q € Q(R)|lqg C R}.
ILh=(R:(R:1))rand ,/ =(R:(R:1),).




If R is a maximal order, then D(R) = {v-ideals} is a group under
the multiplication o, where [ o J := (1J),.
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Let V4 be an R-S submodule of Q(V). Vj is called a fractional
R-S module
<
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TFAE:
1. T is a maximal order in Q(T).

2. (i) Vis an R-S maximal module in Q(V) and W is an S-R
maximal module in Q(W);
([ (R:W)=V=(5:W),and (R: V), =W =(5:V),.
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Vis an (R, S)-Asano module in Q(V) if for each integral
(R,S)-module V', (V/)71V/ =S and V/(V/)"1 = R.
Similarly we can define an (S, R)—Asano module W in Q(W).

> It follows from Lemma that if R and S are Asano orders in
Q(R) and Q(S), respectively, then V is an (R, S)-Asano
module in Q(V) and W is an (S, R)-Asano module in Q(W).
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Suppose that VW = R and WV = S.

Then there is a one-to-one correspondence between

the set of all fractional R—ideals and the set of all fractional
(R, S)—modules in Q(V),

which is given by :

| — IV=V and V' — V'W,
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Definition[Akalan, 2008]

A prime Goldie ring R is called a Generalized Dedekind prime
(G-Dedekind, for short) ring if

» R is a maximal order and




Conjecture

T is a G-Dedekind prime ring <—-

1. R and S are G-Dedekind prime rings,
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