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Background

A Morita context is a set M = (R,V ,W , S) and two maps θ and
ψ, where

I V is an R-S bimodule,

I W is an S-R bimodule.

I θ : V ⊗S W → R is an R-R bilinear map,

I ψ : W ⊗R V → S is an S-S bilinear map.



Background

A Morita context is a set M = (R,V ,W , S) and two maps θ and
ψ, where

I V is an R-S bimodule,

I W is an S-R bimodule.

I θ : V ⊗S W → R is an R-R bilinear map,

I ψ : W ⊗R V → S is an S-S bilinear map.



Background

A Morita context is a set M = (R,V ,W , S) and two maps θ and
ψ, where

I V is an R-S bimodule,

I W is an S-R bimodule.

I θ : V ⊗S W → R is an R-R bilinear map,

I ψ : W ⊗R V → S is an S-S bilinear map.



Background

A Morita context is a set M = (R,V ,W , S) and two maps θ and
ψ, where

I V is an R-S bimodule,

I W is an S-R bimodule.

I θ : V ⊗S W → R is an R-R bilinear map,

I ψ : W ⊗R V → S is an S-S bilinear map.



Background

Furthermore, the maps θ and ψ satisfy the associativity conditions
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T =

(
R V
W S

)
a ring.
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Let R be a prime Goldie ring and Q(R) be its simple Artinian
quotient ring.
Definition: Let I be an R-R bisubmodule of Q(R). I is called
fractional R-ideal if it satisfies

1. I contains a regular element.

2. There exist regular elements c1, c2 ∈ R such that c1I ⊆ R and
Ic2 ⊆ R.
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A commutative ring
R is a Dedekind domain ⇐⇒ F (R) = {I |I is a fractional R-ideal}
is a group under multiplication.
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If R is a maximal order, then D(R) = {v -ideals} is a group under
the multiplication ◦, where I ◦ J := (IJ)v .



Theorem[Marubayashi, Zhang and Yang, 1998]

T =

(
R V
W S

)
is a prime Goldie ring ⇐⇒

1. R and S are prime Goldie rings,

2. vW = 0⇒ v = 0 and Vw = 0⇒ w = 0,
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Let V1 be an R-S submodule of Q(V ). V1 is called a fractional
R-S module
⇐⇒

1. V1Q(S) = Q(V ) = Q(R)V1

2. There exist regular elements c ∈ R and d ∈ S such that
cV1 ⊆ V and V1d ⊆ V .
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1. T is a maximal order in Q(T ).
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Suppose that T is a maximal order in Q(T ). Then there exists a
1-1 correspondence between D(V ) and D(R) given by:

V1 → (V1W )v and I → (IV )v



Theorem

Suppose that T is a maximal order in Q(T ). Then there exists a
group isomorphism between D(R) and D(T ) given by

I ←→
(

I (IV )v
(WI )v (WIV )v

)



Applications

Asano order: A prime Goldie ring in which each non-zero ideal is
invertible.

Lemma: Suppose that R and S are Asano orders in Q(R) and
Q(S), respectively. Then

1. For each fractional (R, S)–module V ′ in Q(V ) we have
(V ′)−1V ′ = S and V ′(V ′)−1 = R.

2. For each fractional (S ,R)–module in Q(W ) we have
(W ′)−1W ′ = R and W ′(W ′)−1 = S .
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(R,S)–module V ′, (V ′)−1V ′ = S and V ′(V ′)−1 = R.
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I It follows from Lemma that if R and S are Asano orders in
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module in Q(V ) and W is an (S ,R)–Asano module in Q(W ).

I Moreover, it is easy to see that V is an (R,S)–Asano module
in Q(V ), then it is an (R,S)–maximal module in Q(V ).

I An analogous result can be given for W .
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I V is an (R,S)–maximal module in Q(V ), and
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Definition[Akalan, 2008]

A prime Goldie ring R is called a Generalized Dedekind prime
(G -Dedekind, for short) ring if

I R is a maximal order and

I Every v -ideal is invertible.



Conjecture

T is a G -Dedekind prime ring ⇐⇒
1. R and S are G -Dedekind prime rings,

2. (R : W )l = V = (S : W )r and (R : V )r = W = (S : V )l .
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